

Current and future ISSeP projects on microplastics Audrey Joris

Workshop Microplastics Maastricht, 28th November 2023

Presentation

- > General presentation
- > ISSeP Activities
- > Microplastics projects
 - > Finished projects
 - Projects in progress
 - > Future project

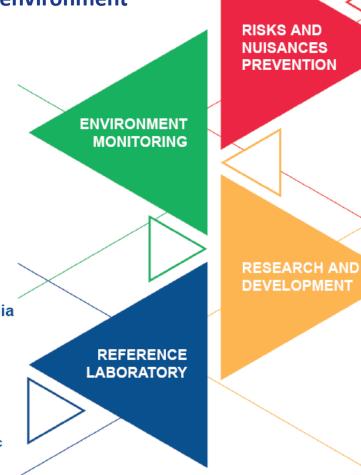
General Presentation

ISSeP: Scientific Institute of Public Service for Walloon Region

ISSeP Activities

Technical and scientific support for the Walloon Administration Walloon Ministry of the environment

Environment monitoring


Air ambient
Modelling
Atmospheric emissions
Water quality
Earth observation
Remote sensing and geodata
Mapping
Ecotoxicology
Contamined sediment
Soil quality
Waste and hazardous sites

Reference laboratory for Wallonia

Interface between public authorities and private providers

Technical expertise to approvals granted by Wallonia

Provide all those involved in the public and private sectors

Risks and nuisances prevention

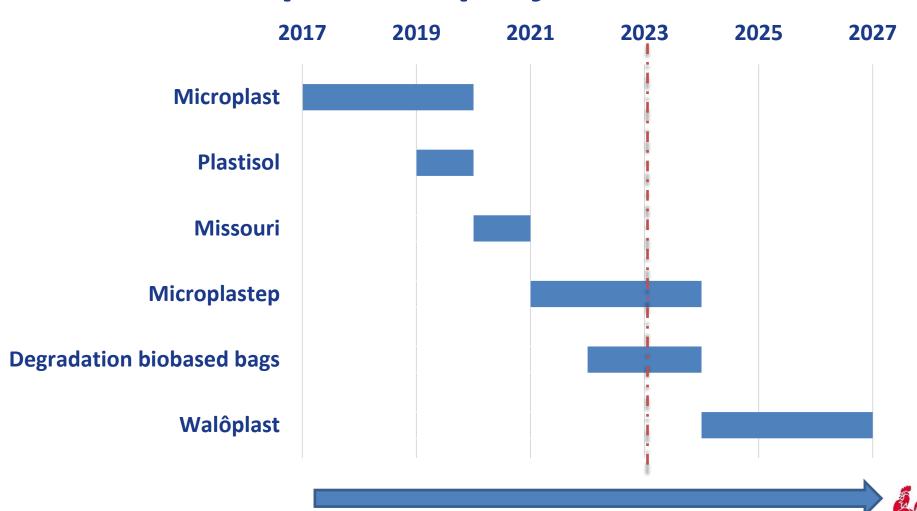
Chronic risks
Geological risks
Accidental risks
Fire/explosion
Equipment control
Nanoparticles
Ecological risk assessement

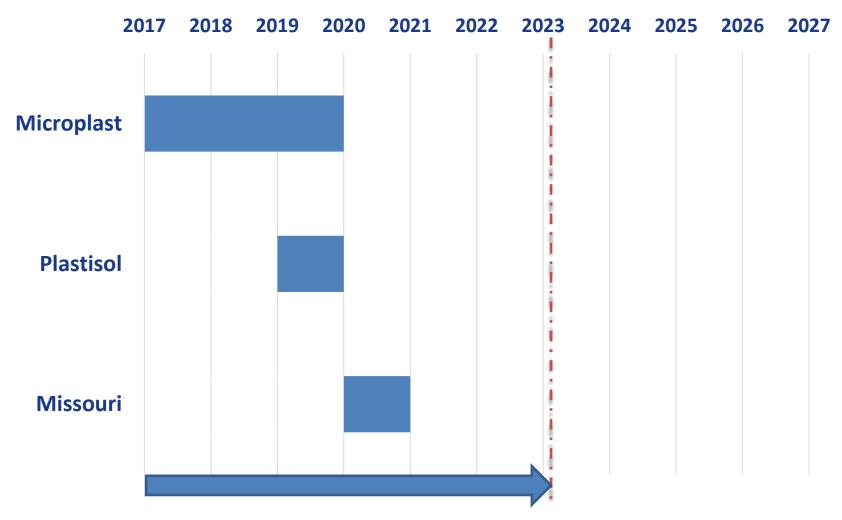
Research and development

Equity based research

Walloon research programmes

European programmes

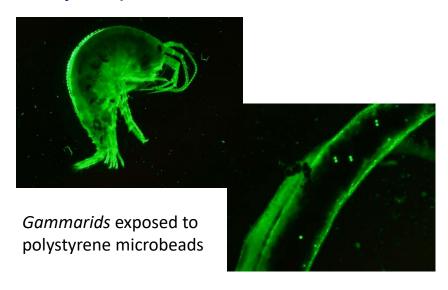

Interdisciplinarity that enabled to create synergies with numerous partners

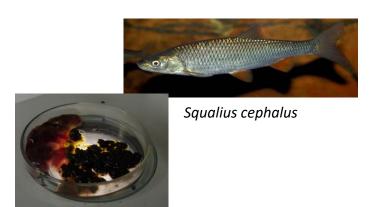


Research and development

ISSeP Microplastics projects

Finished projects





Microplast (2017-2020)

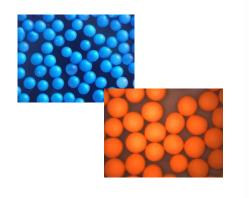
- ➤ Highlight the presence and occurrence of microplastics in the biota of Walloon rivers;
- Dose compounds such as bisphenol A and phthalates, released by plastics, in the fish collected.
- > Assessing the impact of microplastics on freshwater invertebrates (*Gammarus pulex*).

Project leader : ISSeP D.Leroy Partners : ULiège, UNamur

Own funds

Microplast (2017-2020)

- A method for visualizing microplastics ingested by freshwater fish was selected: digestion of organic matter (KOH) + staining of the filtered sample (Nile Red).
 26 fragments were analyzed by Pyrolysis GC-MS (Flemish reference laboratory for environmental monitoring, K. Tirez) → 5 fragments potentially related to plastics were identified.
- > Nine phthalate congeners and bisphenol A were tested in fish muscle pools from 23 sampling sites. For all samples analyzed, BPA concentrations ranged from <1 μg/kg fresh weight to 55.8 μg/kg fresh weight. Four of the nine phthalates tested were never detected above the LOQ (DPP, BBP, DCHP and DDcP). Of the remaining 5 congeners, the most frequently detected were DBP and DEHP.
- \succ At the same concentration, Gammarus pulex ingested a significantly larger amount of 25 μm diameter beads compared to 45 or 90 μm diameter beads. Moreover, the concentration of microbeads in the medium had an influence on the amount of ingested beads.

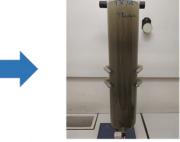


PlastiSOLS (2019)

Microplastics in solids: Development of simple separation techniques in sludge water treatment

Spiking polyethylene and polypropylene

microbeads



Step by step

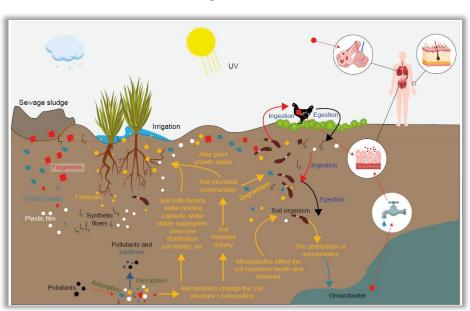
Remove organic matter

Filtration

Own funds

Decantation

> 90% recovery of polyethylene and polypropylene microbeads in sizes from 300 to 700 μm Project leader: ISSeP A.Joris



MISSOURI (2020-2021)

Microplastics in soil and groundwater: sources, transfer, metrology and impacts

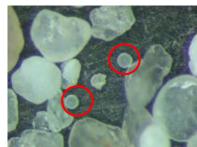
State of art and survey

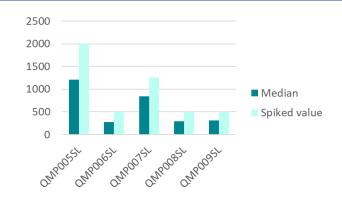
Project leader: INERIS K.Perronet

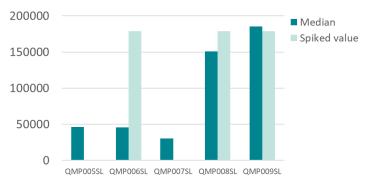
Partners: ISSeP A.Joris & VU P. Leonards

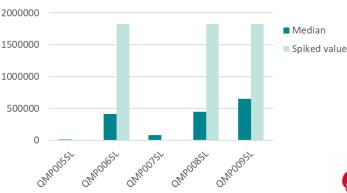
Funds: SoilVer (European Project)

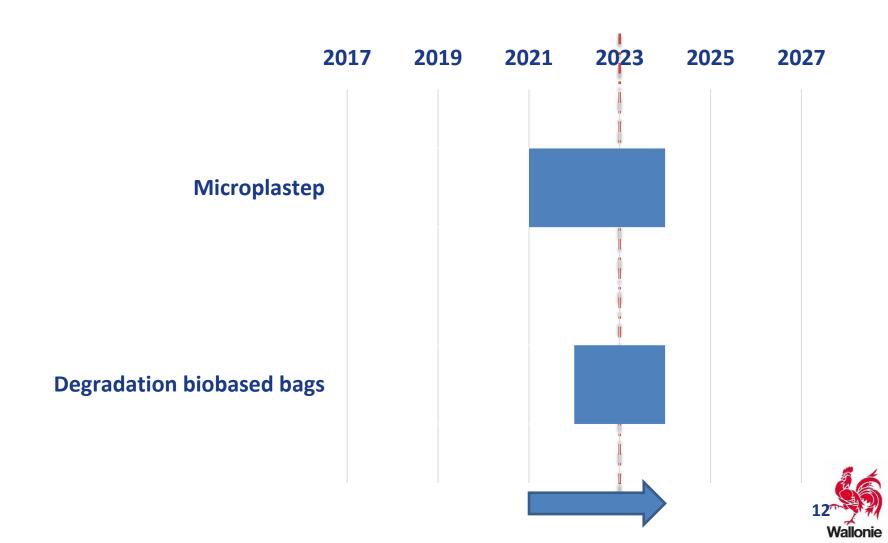
Perez C., Carré F., Hoarau-Belkhiri A., Joris A., Leonards P., Lamoree M. (2022) Innovations in analytical methods to assess the occurrence of microplastics in soil Journal of Environmental Chemical Engineering




MISSOURI (2020-2021)

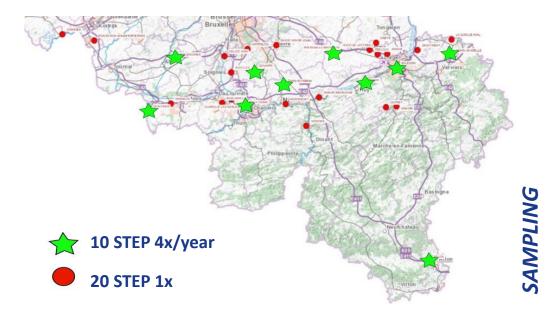

Interlaboratory study


Batch number	Batch name	Matrix	Quantity of matrix in each bottle	МР	Quantity of MP in each bottle
1	QMP005SL	Sand	20 g	PE	40 mg
2	QMP006SL	Sand	20 g	PE	10 mg
				PMMA	15 mg
				PS	1.5 mg
3	QMP007SL	Real sandy soil 250 μm	20 g	PE	25 mg
4	QMP008SL	Real sandy soil 250 μm	20 g	PE	10 mg
				PMMA	15 mg
				PS	1.5 mg
5	QMP009SL	Real sandy soil (25% 250 µm + 75% 2 mm)	20 g	PE	10 mg
				PMMA	15 mg
				PS	1.5 mg

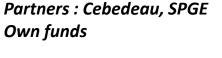

- Spiked sand was as difficult as spiked real soil samples
- Similar relative standard deviation for spiked single or mixtures of microplastics
- Quantification on mass basis had lower relative standard deviation than on particle basis
- Indications that methyl polymethacrylate particles behave differently than polyethylene and polystyrene in glass bottles

Projects in progress

MicroPlaSTEP (2021-2024)



Diagnosis of the effectiveness of WWTPs for treating microplastics in wastewater


Project leader: ISSeP A.Joris

Effluent (after treatment)

Wastewater (inlet)

PREPARATION

ISSeP Microplastics Projects

MicroPlaSTEP (2021-2024)

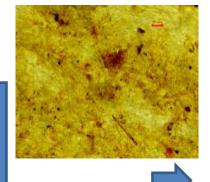
Diagnosis of the effectiveness of WWTPs for treating microplastics in wastewater

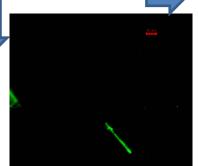
Oxydation

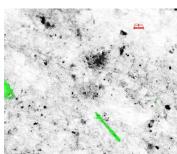
Decantation

Filtration

MicroPlaSTEP (2021-2024)

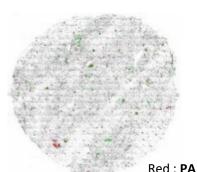

Diagnosis of the effectiveness of WWTPs for treating microplastics in wastewater




UV + green filter excitation/emission

460/525 nm)

NILE RED STAINING



Picture treatment Zoom 50x

FTIR

Green : **PET**

Yellow: PP

Ghent University
Nicolet™ iS™ 10 FTIR
Spectrometer ThermoFisher

Composition	PET	PA	PP	PS	Unidentified
# Particules	437	875	1	1	1117

PET: ethylene polyphtalate

PA: polyamide PP: polypropylene PS: polystyrene

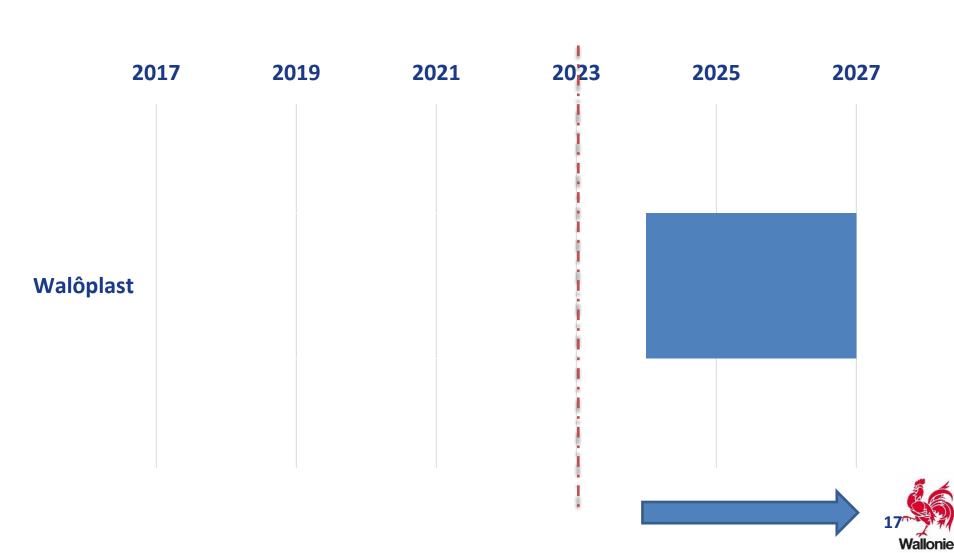
Degradation of biobased bags (2022-2024)

Evaluation of the degradation of plastic bags sold as compostable within the framework of three composting operations as they are carried out in Wallonia

Home composting

Community composting

Industrial composting



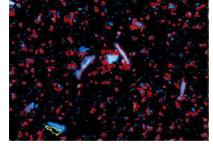
Project leader : ISSeP F. Lienard , Funds : SPW 16 .

Wallonie

Future project

Walôplast (2024-2027)

Distribution and occurrence of microplastics in the Walloon environment: development of sampling and analysis methods, characterisation of Walloon


environmental matrices.

FTIR

Overview image of waste water with $\mu FTIR$ Agilent LDIR 8700 system

Pyrolysis GC MS

Project leader : ISSeP A.Joris
Partners : Lasire (ULille)

Own funds

Thanks for your attention

www.issep.be

Contact: a.joris@issep.be

